Математика
2.2.10. Изображение на координатной плоскости множества решений неравенств с двумя переменными и их систем
Графическое решение неравенства с двумя переменными
Часто приходится изображать на координатной плоскости множество решений неравенства с двумя переменными. Решением неравенства с двумя переменными называют пару значений этих переменных, которая обращает данное неравенство в верное числовое неравенство.
Изобразим на координатной плоскости множество решений неравенства 2у + Зх < 6.
Сначала построим прямую. Для этого запишем неравенство в виде уравнения 2у + Зх = 6 и выразим y. Таким образом, получим: y=(6-3x)/2.
Эта прямая разбивает множество всех точек координатной плоскости на точки, расположенные выше ее, и точки, расположенные ниже ее.
Возьмем из каждой области по контрольной точке, например А (1;1) и В (1; 3)
Координаты точки А удовлетворяют данному неравенству 2у + Зх < 6, т. е. 2 • 1 + 3 • 1 < 6.
Координаты точки В не удовлетворяют данному неравенству 2∙3 + 3∙1 < 6.
Так как данное неравенство может изменить знак на прямой 2у + Зх = 6, то неравенству удовлетворяет множество точек той области, где расположена точка А. Заштрихуем эту область.
Таким образом, мы изобразили множество решений неравенства 2у + Зх < 6.
Пример
Изобразим множество решений неравенства х2 + 2х + у2 - 4у + 1 > 0 на координатной плоскости.
Построим сначала график уравнения х2 + 2х + у2 - 4у + 1 = 0. Выделим в этом уравнении уравнение окружности: (х2 + 2х + 1) + (у2 - 4у + 4) = 4, или (х + 1)2 + (у - 2)2 = 22.
Это уравнение окружности с центром в точке 0 (-1; 2) и радиусом R = 2. Построим эту окружность.
Так как данное неравенство строгое и точки, лежащие на самой окружности, неравенству не удовлетворяют, то строим окружность пунктирной линией.
Легко проверить, что координаты центра О окружности данному неравенству не удовлетворяют. Выражение х2 + 2х + у2 - 4у + 1 меняет свой знак на построенной окружности. Тогда неравенству удовлетворяют точки, расположенные вне окружности. Эти точки заштрихованы.
Пример
Изобразим на координатной плоскости множество решений неравенства
(у - х2)(у - х - 3) < 0.
Сначала построим график уравнения (у - х2)(у - х - 3) = 0. Им является парабола у = х2 и прямая у = х + 3. Построим эти линии и отметим, что изменение знака выражения (у - х2)(у - х - 3) происходит только на этих линиях. Для точки А (0; 5) определим знак этого выражения: (5- 3) > 0 (т. е. данное неравенство не выполняется). Теперь легко отметить множество точек, для которых данное неравенство выполнено (эти области заштрихованы).
Алгоритм решения неравенств с двумя переменными
1. Приведем неравенство к виду f (х; у) < 0 (f (х; у) > 0; f (х; у) ≤ 0; f (х; у) ≥ 0;)
2. Записываем равенство f (х; у) = 0
3. Распознаем графики, записанные в левой части.
4. Строим эти графики. Если неравенство строгое (f (х; у) < 0 или f (х; у) > 0), то - штрихами, если неравенство нестрогое (f (х; у) ≤ 0 или f (х; у) ≥ 0), то - сплошной линией.
5. Определяем, на сколько частей графики разбили координатную плоскость
6. Выбираем в одной из этих частей контрольную точку. Определяем знак выражения f (х; у)
7. Расставляем знаки в других частях плоскости с учетом чередования (как по методу интервалов)
8. Выбираем нужные нам части в соответствии со знаком неравенства, которое мы решаем, и наносим штриховку