Будьте внимательны! Проект находится в тестовой эксплуатации!
Играй - Развивайся - Поступай в ТПУ
Математика

6.3.2. Примеры использования вероятностей и статистики при решении прикладных задач

Рейтинг: 0

Примеры использования вероятностей - часть 2

Пример 6. Определить вероятность выпадения нечётного числа очков на кости.

Решение. При бросании кости событие A – «выпало нечётное число очков» можно записать как подмножество {1, 3, 5} пространства исходов {1, 2, 3, 4, 5, 6} (рис. 1).

Число всех равновозможных исходов n = 6, а число благоприятных событию Am = 3. Следовательно,

\(P(A)=\frac{3}{6}=\frac{1}{2}.\)

Пример 7. В урне находится 7 шаров: 2 белых, 4 черных и 1 красный. Вынимается один шар наугад. Какова вероятность того, что вынутый шар будет чёрным?

Решение. Занумеруем шары. Пусть, например, шары с номерами 1 и 2 – белые, с номерами 3, 4, 5 и 6 – чёрные, а красному шару присвоим номер 7. Так как мы можем вынуть только один из семи шаров, то общее число равновозможных исходов равно семи (n = 7). Из них 4 исхода – появление шаров с номерами 3, 4, 5 и 6 – приведут к тому, что вынутый шар будет чёрным (m = 4). Тем самым, вероятность события А, состоящего в появлении чёрного шара, равна:

\(P(A)=\frac{4}{7}.\)

Пример 8. Вычислить вероятность выпадения в сумме 10 очков при бросании пары костей.

Решение. Рассмотрим все равновозможные исходы в результате бросания двух костей (их число равно 36 - рекомендуем записать в виде таблицы). Выпадение в сумме 10 очков (событие А) возможно в трёх случаях – 4 очка на первой кости и 6на второй, 5 очков на первой и 5 на второй, 6 очков на первой и 4 на второй. Поэтому вероятность события А (выпадения в сумме 10 очков) равна:

\(P(A)=\frac{3}{36}=\frac{1}{12}.\)

Свойство 1. Вероятность достоверного события А равна единице: Р(А) = 1.

Свойство 2. Вероятность невозможного события А равна нулю: Р(А) = 0.

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей:

\(0\leq P(A)\leq 1.\)

Пример 9. Так как вероятность выпадения 13 очков при бросании пары костей – невозможное событие, его вероятность равна нулю.

Классическое определение вероятности предполагает, что число элементарных исходов испытания конечно. На практике же часто встречаются испытания, число возможных исходов которых бесконечно. Кроме этого, часто невозможно представить результат испытания в виде совокупности элементарных событий. Еще труднее указать основания, позволяющие считать элементарные события равновозможными. По этой причине, наряду с классическим определением вероятности используют и другие определения, в частности статистическое определение.

Статистическое определение вероятности

Относительная частота наряду с вероятностью принадлежит к основным понятиям теории вероятностей.

Относительной частотой события А называют отношение числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний:

\(W(A)=\frac{m}{n}.\)

Здесь m – число появлений события А, n – общее число испытаний.

Классическая вероятность вычисляется до опыта, а относительная частота – после опыта.

Длительные наблюдения показали, что если в одинаковых условиях производят опыты, в каждом из которых число испытаний велико, то относительная частота обнаруживает свойство устойчивости. Это свойство состоит в том, что в различных опытах относительная частота изменяется мало (тем меньше, чем больше произведено испытаний), колеблясь около некоторого постоянного числа. Это постоянное число и есть вероятность появления события.

Таким образом, при достаточно большом количестве испытаний в качестве статистической вероятности события принимают относительную частоту или число, близкое к ней.

Пример 10. Естествоиспытатель К. Пирсон терпеливо подбрасывал монету и после каждого бросания не ленился записывать полученный результат. Проделав эту операцию 24 000 раз, он обнаружил, что герб выпадал в 12 012 случаях. Вычисляя относительную частоту выпадения герба, он получил:

\(\frac{12012}{24000}=0,5005,\)

что практически равно 1/2.

Время на изучение: 30 минут

Другие материалы по данной теме

  Определение

Событие

Изучить
  Видео

Решение задач теории вероятностей.

Посмотреть