Физика
1.5.5. Звук. Скорость звука
Звук. Скорость звука.
Звуковыми волнами или просто звуком принято называть волны, воспринимаемые человеческим ухом. Диапазон звуковых частот лежит в пределах приблизительно от 20 Гц до 20 кГц. Волны с частотой менее 20 Гц называются инфразвуком, а с частотой более 20 кГц – ультразвуком. Волны звукового диапазона могут распространяться не только в газе, но и в жидкости (продольные волны) и в твердом теле (продольные и поперечные волны). Однако волны в газообразной среде – среде нашего обитания – представляют особый интерес. Изучением звуковых явлений занимается раздел физики, который называют акустикой.
При распространении звука в газе атомы и молекулы колеблются вдоль направления распространения волны. Это приводит к изменениям локальной плотности ρ и давления p. Звуковые волны в газе часто называют волнами плотности или волнами давления.
В простых гармонических звуковых волнах, распространяющихся вдоль оси OX, изменение давления p (x, t) зависит от координаты x и времени t по закону
\(p (x, t) = p0 cos (ωt ± kx)\)
Важной характеристикой звуковых волн является скорость их распространения. Она определяется инертными и упругими свойствами среды. Скорость распространения продольных волн в любой безграничной однородной среде определяется по формуле:
\( \upsilon = \sqrt {\frac{B}{\rho }}\)
где B – модуль всестороннего сжатия, ρ – средняя плотность среды. Еще Ньютон пытался вычислить значение скорости звука в воздухе. Он предположил, что упругость воздуха просто равна атмосферному давлению pатм, тогда скорость звука в воздухе получается меньшей 300 м/с, в то время, как истинная скорость звука при нормальных условиях (т. е. при температуре 0 °С и давлении 1 атм) равна 331,5 м/с, а скорость звука при температуре 20 °С и давлении 1 атм равна 343 м/с. Между областями разрежения и сжатия газа возникает разность температур, которая существенно влияет на упругие свойства. Лаплас предположил, что сжатие и разрежение газа в звуковой волне происходят по адиабатическому закону, т. е. без влияния теплопроводности.
В термодинамике доказывается, что коэффициент γ равен отношению теплоемкостей при постоянном давлении Cp и при постоянном объеме CV. Формулу Лапласа можно представить в другом виде, если воспользоваться уравнением состояния идеального газа. Приведем здесь окончательное выражение
\(\upsilon = \sqrt {\frac{{\gamma RT}}{M}} \)
де T – абсолютная температура, M – молярная масса, R = 8,314 Дж/моль·К – универсальная газовая постоянная. Скорость звука сильно зависит от свойств газа. Чем легче газ, тем больше скорость звука в этом газе. Так, например, в воздухе (M = 29·10–3 кг/моль) при нормальных условиях υ = 331,5 м/с, в гелии (M = 4·10–3 кг/моль) υ = 970 м/с, в водороде (M = 2·10–3 кг/моль) υ = 1270 м/с.
В жидкостях и твердых телах скорость звуковых волн еще больше. В воде, например, υ = 1480 м/с (при 20 °С), в стали υ = 5–6 км/с.
При восприятии различных звуков человеческое ухо оценивает их прежде всего по уровню громкости, зависящей от потока энергии или интенсивности звуковой волны. Воздействие звуковой волны на барабанную перепонку зависит от звукового давления, т. е. амплитуды p0 колебаний давления в волне. Человеческое ухо является совершенным созданием Природы, способным воспринимать звуки в огромном диапазоне интенсивностей: от слабого писка комара до грохота вулкана. Порог слышимости соответствует значению p0 порядка 10–10 атм, т. е. 10–5 Па. При таком слабом звуке молекулы воздуха колеблются в звуковой волне с амплитудой всего лишь 10–7 см! Болевой порог соответствует значению p0 порядка 10–4 атм или 10 Па. Таким образом, человеческое ухо способно воспринимать волны, в которых звуковое давление изменяется в миллион раз. Так как интенсивность звука пропорциональна квадрату звукового давления, то диапазон интенсивностей оказывается порядка 1012! Человеческое ухо, способное воспринимать звуки в таком огромном дипазоне интенсивности, можно сравнить с прибором, который можно использовать для измерения и диаметра атома и размеров футбольного поля.
Еще одной характеристикой звуковых волн, определяющей их слуховое восприятие, является высота звука. Колебания в гармонической звуковой волне воспринимаются человеческим ухом как музыкальный тон. Колебания высокой частоты воспринимаются как звуки высокого тона, колебания низкой частоты – как звуки низкого тона. Звуки, издаваемые музыкальными инструментами, а также звуки человеческого голоса могут сильно различаться по высоте тона и по диапазону частот. Так, например, диапазон наиболее низкого мужского голоса – баса – простирается приблизительно от 80 до 400 Гц, а диапазон высокого женского голоса – сопрано – от 250 до 1050 Гц.